Dependence on the Lazaro Phosphatidic Acid Phosphatase for the Maximum Light Response
نویسندگان
چکیده
The Drosophila phototransduction cascade serves as a paradigm for characterizing the regulation of sensory signaling and TRP channels in vivo . Activation of these channels requires phospholipase C (PLC) and may depend on subsequent production of diacylglycerol (DAG) and downstream metabolites . DAG could potentially be produced through a second pathway involving the combined activities of a phospholipase D (PLD) and a phosphatidic acid (PA) phosphatase (PAP). However, a role for a PAP in the regulation of TRP channels has not been described. Here, we report the identification of a PAP, referred to as Lazaro (Laza). Mutations in laza caused a reduction in the light response and faster termination kinetics. Loss of laza suppressed the severity of the phenotype caused by mutation of the DAG kinase, RDGA , indicating that Laza functions in opposition to RDGA. We also showed that the retinal degeneration resulting from overexpression of the PLD was suppressed by elimination of Laza. These data demonstrate a requirement for a PLD/PAP-dependent pathway for achieving the maximal light response. The genetic interactions with both rdgA and Pld indicate that Laza functions in the convergence of both PLC- and PLD-coupled signaling in vivo.
منابع مشابه
lazaro Encodes a Lipid Phosphate Phosphohydrolase that Regulates Phosphatidylinositol Turnover during Drosophila Phototransduction
An essential step in Drosophila phototransduction is the hydrolysis of phosphatidylinositol 4,5 bisphosphate PI(4,5)P2 by phospholipase Cbeta (PLCbeta) to generate a second messenger that opens the light-activated channels TRP and TRPL. Although the identity of this messenger remains unknown, recent evidence has implicated diacylglycerol kinase (DGK), encoded by rdgA, as a key enzyme that regul...
متن کاملSphingosine-1-phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation.
Sphingosine and sphingosine-1-phosphate, metabolites of membrane sphingolipids, have recently been shown to stimulate release of calcium from internal sources and to increase proliferation of quiescent Swiss 3T3 fibroblasts (Zhang, H., Desai, N. N., Olivera, A., Seki, T., Brooker, G., and Spiegel, S. (1991) J. Cell Biol. 114, 155-167). The present study demonstrates that mitogenic concentration...
متن کاملStudies on the Carrier Function of Phosphatidic Acid in Sodium Transport
Incubation of slices of the salt gland of the albatross with acetylcholine, which is the physiological secretogogue for this tissue, led to a 13-fold increase in the rate of incorporation of P(32) into phosphatidic acid and a 3-fold increase in the incorporation of P(32) and inositol-2-H(3) into phosphoinositide. The incorporation of P(32) into phosphatidyl choline and phosphatidyl ethanolamine...
متن کاملThe mechanism of phosphate exchange in phosphatidic acid in response to acetylcholine.
Acetylcholine stimulates the exchange of phosphate in phosphatidic acid in guinea pig brain cortex slices (1) and in cytoplasmic particulate fractions of brain which are undergoing oxidative phosphorylation (2). In this paper the reactions involved in the acetylcholine effect in brain microsomal preparations have been investigated. The data presented here indicate that in brain microsomes phosp...
متن کاملRegulation of Phosphatidic Acid Metabolism by Sphingolipids in the Central Nervous System
This paper explores the way ceramide, sphingosine, ceramide 1-phosphate, and sphingosine 1-phosphate modulate the generation of second lipid messengers from phosphatidic acid in two experimental models of the central nervous system: in vertebrate rod outer segments prepared from dark-adapted retinas as well as in rod outer segments prepared from light-adapted retinas and in rat cerebral cortex ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006